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ABSTRACT

A semi - infinite homogenious nonmagnetic shielded slab with grating of thin metallic
strips that are printed symmetrically on both sides of the slab was considered. The main
wave of the dielectric slab falls under arbitrary angle on the boundary between slab and
grating. The dispersive equation of periodic structure was obtained and solved by nu-
merical-analytical method. The diffraction problem was formulated and solved by Vie-
ner-Hopf technique.

THE EIGENWAVE PROBLEM

Let us consider a homogeneous nonmagnetic dielectric shielded slab of thickness 2d.
Gratings of thin metallic strips with 21<<« width. where Z is a wavelength in slab me-
dium, are printed symmetrically on both sides of the slab. Coordinates are assumed as
shown in Fig. 1.The eigenwaves of the structure considered in our case are assumed to
be solutions of a boundary value problem for an electromagnetic field. These solutions
exibit a harmonic dependence on the x axis of exp(-j]x) and quasiperiodic dependence
on the z axis of type E(z)=E(z+nP)exp(jf3nP), where x and P are spectral parameters
determining the wave propagation direction, and n is the strip number. The electric field
amplitude time dependence exp(ijt) is omitted for simplification. An electric or mag-
netic wall can be placed in the structure symmetry plane y=0. In the present article we
shall limit ourselves to analysis of waves corresponding to the magnetic wall case. Be-
cause of thinness of the grating strips, the longitudinal components of currents are much
more then cross components. So we can use only one boundary condition for the for-
mulation of the problem. It is assumed that E,=0 for perfectly conducting metallic
strips.
Let us obtain the approximate dispersion equation. This equation couples the structure
spectral parameters X and P3with nonspectral ones: P/,. 2d/?ý, 20/-•, and F, - relative di-
electric permittivity of the slab. Keeping in mind the equal spacing of the grating, let us
set periodic conditions for the strip currents at IJIoexp(-Jf3nP), where Il - current den-
sity on zero strip. It is known that the cross-strip current distribution is given by the

Maxwell function (1-(z'/1)2 )12 [1]. Taking into account the above approximation and
using the boundary conditions, we shall formulate the integral equation as

f (G(x~x';z.z')I(x)exp(-,f3nP)(I-(/l)2 ) ,, 2dx'd'= 0, (1)

where
n=0,+±1,±2,...- the strip number. The function G can be obtained by the Fourier integral

G(x,x';z,z') Jg(R,uo)exp(-/i (x - x') -. iu(z - z'))dduct, (2)

k/hTi, LIIi': A i v [VIFRA,., uuvt CO~ruNvI :' ox AI .O iN v AfLv71(101)S I/\ l P 'M)?1.1. ( 110f(AN'I/ii( Ti/ ? )I



MMET*02 PROCEEDINGS 433

where g(4,c,) is a known function. Let us evaluate an integral on ai in (2) according to
Cauchy theorem. An integral on x' in (1) is evaluated trivially, assuming the current
variability along the strip to be I(x')=exp(-jXx'). It is equal to 27t6 (4-Z), where the sym-
bol 6 denotes the Dirac delta function. To avoid a z' dependence in (1) let us use the
Galerkin method. As a rule in a slab two modes are propagating ones. They are the TE,
and TM2 modes with Uff Uh and UX2= cxe. The term with n=0 is calculated numerically.
As a result we obtain a rather simple relationship reducing the integrals on z' and n cc in
(1) and (2) to a double series. Evaluating an integral on ý we obtain

ZDCDh +jX, k0 P3, sin( ,P)D, +JXp 2k0 2m2 X0 -1 sin(XP)Dh =0, (3)

where De h cos(7e,ihP) -cos(f3P), r71, Z are definite functions of X, and X,,h(,h 2x 2)1/2
For the grating considered, as a rule, single - mode conditions are not satisfied because
even in a shielded slab without a grating TE, and TM 2 waves exist. In the grating they
are converted into HEIl and EH 21 modes with similar structure. However, by proper se-
lection of structure parameters, we can create the situation where only the main HE1]
mode propagates. Cutoff conditions for HE 12 and EH21 modes were obtained from the
dispersion equation

3H..12  = P-1 arccos ko sin(f3hP)+ cos(h3,,P))i; f.H 2,l = V

THE DIFFRACTION PROBLEM

The diffraction problem was solved by Viener-Hopf technique. A semi-infinite homo-
genious nonmagnetic shielded slab with grating of thin metallic strips that are printed
symmetrically on both sides of the slab was considered. The main wave of the dielectric
slab falls under arbitrary angle on the boundary between slab and grating. The transfer
strip current approximation was taken as Maxwell function. The longitudinal compo-
nent of strip current was found from the integral equation formulated for boundary con-
ditions. Using the field expression through the Green's function G and using zero
boundary conditions we obtain an integral equation:

I 11(s') Z(s-s')ds' + E,(s) = 0, (4)

where E, and I, are the electrical field and current components that are tangential to the
strip axes. The function Z(s - s') can be defined from the function G.The evaluation of
an integral in (4) is carried out along the strip axes. Using the Galerkin technique and
the transfer current approximation by the Maxwell function, we succeeded in obtaining
a one-dimensional equation from the two-dimensional one. It is convenient to solve
equations like (4) by using the Viener-Hopf technique [1]. Hence, we can obtain an ex-
pression for Jt(s) in the Fourier integral form. Evaluating the residue of the integrand at
the point cx= Xl, coincides with the root corresponding to the HE,1 wave, and describes
the current component of our interest (JiHEJI).
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NUMERICAL RESULTS

Dispersive equation (3) was solved numerically. Figure 3 shows variation of the HE,
wave longitudinal normalized propagation constant v=Xo/ko versus cross-strip normal-
ized transverse propagating constant [3/Pjh for relative dielectric permittivity Er-9.8. It is
shown that when [3-0 (longitudinal wave propagation) the retardation factor is equal to
that of a dielectric slab I-I - wave for any structure parameters, because in this case an
electric field has no longitudinal components (E,=0) and is not perturbed by thin grat-
ing strips. If the direction of wave propagation varies ([3•0), the retardation factor in-
creases. It is characteristic for the dependence of HE 12 and EH21 - wave factors on [3/f 3i
for various structure periods that from the onset of some critical P value, the HE12 -
wave retardation factor decreases rapidly.
Due to solving the diffraction problem we can obtain the conversion factor T2 of an HI
wave into an HEI 1 wave as a ratio of wave powers transmitted normally to boundary. In
Figure 2 the dependences of 72 ((k) for various 0 angles and the period P/X -- 0.45 are
shown. High values of T7 is seen in the range of angles /) from -45' to +450. At some
angular points 742 () is equal to unity. It takes place when the incidence angle (P is equal
to the angle between the direction normal to an array boundary and strip axes 0. The
main-mode incident wave does not interact with the grating. We observe complete
transmission for 0 = - 0. In this case the transmitted wave is perturbed by the grating
strips. This effect is similar to the whole transmission with the Brewster angle in the
case of wave diffraction on the boundary between the two dielectric media. In some an-
gles the 1(/) dependence has sharp breaks. They appear when E2 and EH21 waves be-
come nonpropagating ones. turning into an attenuating mode from a propatating one.
This is characteristic for so-called Wood's anomalies, when the derivative on 0 for
transmission factor and for reflectivity is striving to infinity at some points.
The proposed structure can be used as a basis for integrated beam-forming networks for
multibeam antennas.
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